US009354948B2

a2 United States Patent 10) Patent No.: US 9,354,948 B2
Baeuerle et al. (45) Date of Patent: May 31, 2016
(54) DATA MODELS CONTAINING HOST g’?gg’;(s)g gl gggg? PGowers et all
s A upner et al.
LANGUAGE EMBEDDED CONSTRAINTS 6516310 B2 2/2003 Paulley
6,560,598 B2 5/2003 Delo et al.
(71) Applicants:Stefan Baeuerle, Walldort (DE); Timm 6,567,798 Bl 5/2003 Hzl(l)bf:rg et al.
Falter, Walldorf (DE); Daniel Hutzel, 6,631,382 B1 10/2003 Kouchi et al.
Walldorf (DE); Lior Schejter, Walldorf 6,732,084 Bl 5/2004 Kabra et al.
(DE) 6,799,184 B2 9/2004 Bhatt et al.
6,836,777 B2 12/2004 Holle
6,898,603 Bl 5/2005 Petcul t al.
(72) Inventors: Stefan Baeuerle, Walldorf (DE); Timm 6.938.041 Bl 82005 Biacnudz\sxf léteafl
Falter, Walldorf (DE); Daniel Hutzel, 6,996,568 Bl 2/2006 Bedell et al.
Walldorf (DE); Lior Schejter, Walldorf 7,107,497 B2 9/2006 McGuire et al.
(DE) 7,194,744 B2 3/2007 Srivastava et al.
7,225,197 B2 5/2007 Lissar et al.
. 7,290,181 B2 10/2007 D’Angelo et al.
(73) Assignee: SAP SE, Walldorf (DE) 7302447 B2 11/2007 Dettinger et al.
7,305,414 B2 12/2007 Manikutty et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 298 days.
Ruby on Rails Guides, “Active Record Validations,” Aug. 8, 2013,
(21) Appl. No.: 14/020,657 downloaded from the Internet at <url>:https://web.archive.org/web/
. 20130808005838/http://guides.rubyonrails.org/active_record__
(22) Filed: Sep. 6, 2013 validations.html on Aug. 27, 2015, pp. 1-37.*
(65) Prior Publication Data (Continued)
US 2015/0074686 A1~ Mar. 12, 2015 Primary Examiner — Thuy Dao
Assistant Examiner — Stephen Berman
(51) Imt.ClL (74) Attorney, Agent, or Firm — Fountainhead Law Group
GO6F 9/54 (2006.01) PC
GO6F 9/44 (2006.01)
GOGF 17/30 (2006.01) SN _ ABSTRACT o
GO6F 11/36 (2006.01) Techniques are desc.rlbed for expressing a constraint in a host
(52) US.CL language. A constraint can be defined in the host l.anguage as
CPC o GOGF 9/542 (2013.01); GO6F 11/36 an event handler. The event handler can be registered to a
(2013.01); GO6F 17/303’ 71 (2013.01) built-in event .as.sociated with an object of the de.ltabas.e that
. . . the constraint is intended to validate. When the object triggers
(58) Field of Classification Search o .
None the built-in event, the event handler is called to execute the
o . constraint. Exemplary built-in events include onSave (trigger
See application file for complete search history. the event when the object is saved), onValidate (trigger the
(56) References Cited event when an explicit call to validate the object is detected),

U.S. PATENT DOCUMENTS

5,761,493 A 6/1998 Blakeley et al.
5,956,706 A 9/1999 Carey et al.
5,999,908 A 12/1999 Abelow

1000 —y

onlnsert (trigger the event when the object is inserted), onUp-
date (trigger the event when the object is updated), and
onCheckBeforeSave (trigger the event when the object is
checked prior to saving).

20 Claims, 10 Drawing Sheets

receiving, on a computer, a first event handler containing
code configured to validate an object defined in a database

(™ 1002

Y

identifying, by the computer and according o the first event
handler, a built-in event associated with the object

™ 1004

built-in event

registering, by the computer, the first event handler to the

™ 1008

US 9,354,948 B2

Page 2
(56) References Cited 2002/0100014 A1 7/2002 Iborra et al.
2002/0138820 AL* 9/2002 Daly ...occcoovrvrr. GO6F 9/542
U.S. PATENT DOCUMENTS 2003/0009649 Al 1/2003 Marti 1 THnze
artin et al.
7,340,451 B2 3/2008 Sacco 2003/0135850 Al 7/2003 Miloushev et al.
7,380,169 B2 5/2008 Fossum et al. 2003/0140036 Al 7/2003 Belowsov
7,398,530 Bl 7/2008 Parla et al. 2003/0145255 Al* 7/2003 Harty et al.
7,421,448 B2 9/2008 Spork 2004/0117759 Al 6/2004 Rippert, Jr. ... GOG6F 8/20
7434,230 B2 10/2008 Harold et al. . 717/100
7481368 B2 1/2009 Wang et al. 2004/0122817 Al 6/2004 Kaiser
7.505.983 B2 3/2009 Wildhagen etal. 2004/0153435 Al 82004 Gudbjartsson et al.
2004/0249856 Al* 12/2004 Garden GO6F 17/30306
7,523,090 Bl 4/2009 Sundman et al.
7640357 B2 12/2009 Kirov ef al. 2005/0004904 Al 1/2005 Kearney et al.
7653828 B2 12010 Kostadinoy et al. 2005/0010565 AL 1/2005 Cushing et al.
7,680,782 B2 3/2010 Chen et al. 2005/0065958 Al 3/2005 Dettinger et al.
7,689,612 B2 3/2010 Helsen et al. 2005/0187952 Al 8/2005 Werner
7,693,819 B2 4/2010 Stoychev 2005/0256889 Al 11/2005 McConnell
7.761.481 B2 7/2010 Gaurav et al. 2005/0283459 Al 12/2005 MacLennan et al.
7,765,222 B2 7/2010 Styles etal. 2006/0195460 Al 8/2006 Nori et al.
7,765,224 B2 7/2010 Lietal. 2006/0195476 Al 8/2006 Nori et al.
7,788,241 B2 8/2010 Cheng et al. 2006/0224634 Al 10/2006 Hahn et al.
7,805,433 B2 9/2010 Dickerman et al. 2006/0235834 Al 10/2006 Blakeley et al.
7,818,754 B2 10/2010 Morris et al. 2006/0242104 Al 10/2006 Ellis et al.
7,836,070 B2 11/2010 Forstmann 2006/0259912 Al* 11/2006 Weinrich GO5B 19/418
7,873,605 B2* 1/2011 Bhattacharyya .. GO6F 17/30377 719/315
7 885.840 B2 22011 Sadia et al 707/679 2007/0118501 Al 5/2007 Yan
1885, adiq et al. i
7895226 B2 22011 Kochetal. 2007/0219976 Al 9/2007 Muralidhar et al.
7,912,820 B2* 3/2011 Garden GOGF 17/30306 2007/0226203 Al 9/2007 Adya et al.
i 207/702 2008/0065862 Al 3/2008 Hansen et al.
2008/0071799 Al 3/2008 Evans et al.
7,937,401 B2 5/2011 Pasumansky et al. ..
7.970.823 B2 6/2011 Moeller et al. 2008/0091691 Al 4/2008 Tsuji
7’975’254 B2 7/2011 Gilboa 2008/0120604 Al 5/2008 Morris
: 2008/0133530 Al 6/2008 Wang etal.
7,996,443 B2 82011 Nori et al.
8,005,850 B2 8/2011 Walther et al. 2008/0222159 Al 9/2008 Aranha et al.
8,010,521 B2 82011 Kissneretal. 2008/0301168 Al 12/2008 Adler et al.
8,065,323 B2 11/2011 Sallakonda et al. 2009/0240664 Al 9/2009 Dinker et al.
8,069,184 B2 11/2011 Becker et al. 2009/0292730 Al 11/2009 Lietal.
8,078,643 B2 12/2011 Mush et al. 2010/0082646 Al 4/2010 Meek et al.
8,122,009 B2 22012 Dettinger et al. 2010/0114935 Al 5/2010 Palo-Malouvier et al.
8,146,103 B2 3/2012 Schmidt et al. 2010/0131568 Al 5/2010 Weinberg et al.
8,185,508 B2 5/2012 Vemuri et al. 2010/0241637 Al 9/2010 Kissner et al.
8,191,081 B2 52012 Schmidt et al. 2010/0293523 Al 11/2010 Ahadian et al.
g%‘fi’gg g% %83 ge_arney etale 2010/0318499 Al 12/2010 Arasu et al.
S runes et al. 2011/0154226 Al 6/2011 Guertler et al.
g%;g’gg‘ g% ;ggﬁ gﬁ;‘;‘%ﬁ;ﬁl' 2011/0161371 Al 6/2011 Thomson ctal.
©755368 B2 82012 Cox : 2011/0225176 Al 9/2011 Siegel etal.
$281.283 B2 10/2012 Speth et al 2011/0231454 A1 9/2011 Mack
8:327:260 B2 12/2012 Baysetal. 2011/0302212 Al* 12/2011 Agrawal GOG6F 17/30371
8,347,207 B2 1/2013 Borgsmidt et al. 707/793
8364300 B2 1/2013 Pouyez et al. 2012/0005190 Al 1/2012 Faerber et al.
8,364,724 B2 1/2013 Stolte et al. 2012/0016901 Al 1/2012 Agarwal et al.
8,370,400 B2 2/2013 Brunswig et al. 2012/0054142 Al 3/2012 Duetal.
8,375,041 B2 2/2013 Webster et al. 2012/0059802 Al* 3/2012 Daniello GO6F 17/30371
8,386,916 B2 2/2013 LeBrazidec et al. 707/687
8,407,215 B2 3/2013 Sheedy et al. 2012/0109661 Al 5/2012 Lueckhoff
8.407,237 B1 ~ 3/2013 Kudryavtsev et al. 2012/0130942 Al 5/2012 Dipper et al.
8,407,262 B2 3/2013 Hsuetal. 2012/0131392 Al 5/2012 Bendig
3’2‘?}232 gé iggg Eslmmbetal~ il 2012/0136868 Al 5/2012 Hammerschmidt et al.
K B €issenberger et al. % _
8417732 B2 4/2013 Rapp 2012/0143810 Al* 6/2012 Berg-Sonne G05B7(1)2;%
gﬁg’égg g% g‘ggg S;%‘;;?J;rgfson etal. 2012/0144383 AL* 62012 Mishra oo GOGF 11/36
ey : 717/173
8,478,515 Bl 7/2013 Foucher et al.
8,478,850 B2* 7/2013 Delany oo GOGF 9/542 2012/0215768 Al 82012 Zellweger
709223 2012/0239987 Al 9/2012 Chow et al.
8,484,210 B2 7/2013 Loh et al. 2012/0265734 Al* 10/2012 Perez GO6F 17/30292
8,489,649 B2 7/2013 Yalamanchi et al. . ' N 707/687
8,504,522 B2 8/2013 Wu et al. 2013/0110879 Al 5/2013 Winternitz et al.
8,504,568 B2 82013 Chandrasekhara et al. 2013/0111310 Al 5/2013 deOliveira et al.
8,505,032 B2 82013 Craddock et al. 2013/0117346 Al 5/2013 Figus
8,510,296 B2 82013 Fanetal. 2013/0151560 Al 6/2013 Zurek
8,515,982 Bl 82013 Hickman et al. 2013/0159354 Al 6/2013 Hein et al.
8,805,875 Bl 8/2014 Bawcom et al. 2013/0166602 Al 6/2013 Brunswig et al.
8,849,771 B2* 9/2014 Berg-Sonne GO5B 15/02 2013/0246355 Al 9/2013 Nelson et al.
707/687 2014/0149180 Al 5/2014 Yaseen et al.
9,047,334 Bl* 6/2015 Cheriton GO6F 17/30348 2014/0245079 Al 82014 Larson et al.

US 9,354,948 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0258777 Al 9/2014 Cheriton

2014/0330916 Al* 11/2014 Xu ..o GO6F 9/542
709/206
2014/0380266 Al* 12/2014 Bornhoevd GOG6F 8/314
717/104

OTHER PUBLICATIONS

Cialowicz et al., “What are good alternatives to SQL (the lan-
guage)?,” 2012, downloaded from the Wayback Machine Internet
Archive at <url>: http://web.archive.org/web/20100604084412/
http://stackoverflow.com/questions/2497227/what-are-good-alter-
natives-to-sql-the-language on Jan. 8, 2016, pp. 1-9.*

Bhargava, “Concurrency control in database systems,” 1999, IEEE
Transactions on Knowledge and Data Engineering , vol. 11, Issue 1,
pp. 3-16.*

Paton et al., “Identification of database objects by key,” 2005,
Advances in Object-Oriented Database Systems, vol. 334 of the
series Lecture Notes in Computer Science, pp. 280-285.*

Farber et al., “SAP HANA database: data management for modern
business applications,” 2011, ACM SIGMOD Record, vol. 40 Issue 4,
pp. 45-51.*

Pattern: Fill Transient Attributes of Persistent Nodes; SAP; Jul. 6,
2013; p. 1.

Graphics: Display Method (SAP-SERM); SAP Library—BC Data
Modeler; 2004; pp. 1-5.

AboveSoft Utilities; www.AboveSoft.com; Sep. 2010; pp. 1-6.
Ayers, Lonnie, PMP; SAP BW Data Modeling; SAP-BW Consult-
ing, Inc.; pp. 1-18, printed on Aug. 29, 2013.

Heilman, Rich, HANA Product Management, SAP Labs LLC; Steyn,
Werner, Customer Solution Adoption, SAP Labs, LLC; SAP HANA
SQL Script Basics & Troubleshooting; Oct. 2012; pp. 1-47.

* cited by examiner

U.S. Patent May 31, 2016 Sheet 1 of 10 US 9,354,948 B2

150 152

e mme e

: Client 194

‘--—--~

L”““””“””

HANA
120

130

Cale Views

Tablses

r
1
I
I
1

105 112 110

US 9,354,948 B2

Sheet 2 of 10

May 31, 2016

U.S. Patent

L

AL PUB T

AR TS0 LBy

coffan

0ce

ST

BBy

-

=LA

el

¥

SAFUPORHTS LIOR

H

I fons

T '
TI50H /

sgdohy

¢ 9Old

ez L8Cy0oz 9gz 2eT

DT IR

c0c

2BMNAIST DN B0

9¢¢ 144

(444

6Ll

US 9,354,948 B2

Sheet 3 of 10

May 31, 2016

U.S. Patent

€ 'Old

L3LBN

AIDUITHE D U DRI

BN O pasH 5t

A

{Buppirng s safl

Sl

r 3

sufap o3 pasn 5

{Budaont aod)
spogus

Y sasduioD

S5 |

saspduos J

s
saddy sanpep

{14} sabonbuny m&%@%mmﬁ {15084}

)

U.S. Patent May 31, 2016 Sheet 4 of 10 US 9,354,948 B2

% 400

I

ENTITY - RELATIONSHIP MODEL
Source Target

Relationship

K 3\
420
Query Engine

A

Y

SQL Extension

Standard SQL * Entity + key <402

- Source entity«~408

401 - Target entity<_, ,
» Association«_ 404

- Informa&ion

A

)\
Query-"| - 412

Query result

DB
ENGINE

A

Y

RELATIONAL
MODEL

FIG. 4

U.S. Patent May 31, 2016 Sheet 5 of 10 US 9,354,948 B2

19]
(]

Database Organized According {o Relational Model

™\ 502

Database Engine in Communication with Database Utilizing
Language Describing Relational Model

- 504

Application Provided Comprising ERM Including First Entity,
Second Entity, and Relationship

"\ 506

Query Engine of the Application Communicates Query to
Database Engine utilizing Language Extension

"\ 508

Database Engine Returns Query Resuit

. 510

FIG. 5

U.S. Patent

May 31, 2016 Sheet 6 of 10 US 9,354,948 B2

Computer System

Executable

604 —\

> Software

(o)}
N

~

Database

603

Query Database
Engine [*™™ Engine

— 605

~_ .

FIG. 6

US 9,354,948 B2

Sheet 7 of 10

May 31, 2016

U.S. Patent

L 'Old coo T |
| |
w L™ L0L
0Ls \/\ 221A2(J |
NdOo
! abeloig "
. L — 901A8Q] INduy
| !
€0l _ A "
| _ —
0L “ v
| \ |
|
| | Aeidsig
| aoepe)U|
. Kiowsy ”
pos N StomieN
“ m NN
| oL
1oARS |/ GEL S .
BNBS |\ P vEL
SIOMION
02l
|e00] VA
0es JouIalu|
1oreS | Gl
jenes | g8l JoNBS | LEL
lenieg /\/ s/ ﬂ

U.S. Patent May 31, 2016 Sheet 8 of 10 US 9,354,948 B2
800y
830f\ Application
,—~._832
Host Language Entity Constraint Built-in
)) Events
7 ? /
834 836 Q838
& Data Model
ata Mode
820 : 892
Entity (-
CDS
Constraints 824
b
/
<
A 828
12 814
8) '
{ \
SQL Database Constraints
N

810

FIG. 8

US 9,354,948 B2

Sheet 9 of 10

May 31, 2016

U.S. Patent

6 9Old
0.6
Jo|pueH ueA] /
0v6
— jUsA3 ui-ljing 0¢6
096 _— (sao
i9|pueH jusry Wwioyj) JUIesuoD veg
%6 =
- juaA ui-jing
0G6 016
1a|pueH usA3 (saon
Wwioly) JUIBASUOD
Apug
uopeosyddy
A__7¢e8

U.S. Patent May 31, 2016 Sheet 10 of 10 US 9,354,948 B2

1000 vy

receiving, on a computer, a first event handler containing
code configured to validate an object defined in a database [1002

identifying, by the computer and according to the first event |
handler, a built-in event associated with the object 1004

registering, by the computer, the first event handler to the |~ 1006
built-in event

FIG. 10

US 9,354,948 B2

1
DATA MODELS CONTAINING HOST
LANGUAGE EMBEDDED CONSTRAINTS

BACKGROUND

Many database structures rely upon Structured Query Lan-
guage (SQL) as the standard approach to define, read, and
manipulate data within a database. The database can include
constraints and triggers to specify rules to maintain the integ-
rity and consistency of the database. A constraint defines rules
that the database must comply with. The constraint can be
applied to a column, table, multiple tables, or an entire data-
base schema.

A trigger is code that is automatically executed in response
to an event for the purpose of maintaining the integrity of data
on the database. For example, when a new record is added to
an employees’ table, a new record should also be added in the
salaries table for the new employee. The constraints and
triggers can be defined in the SQL and are executed when data
is modified on a database table. However, not all application
developers are proficient in SQL. Furthermore evenifa devel-
oper is proficient in SQL, some constraints are complex and
difficult to represent in SQL. Thus, there is a need for
improved techniques to define constraints.

SUMMARY

Constraints are defined in a host language as event han-
dlers. The techniques described include a computer-imple-
mented method, a non-transitory computer readable storage
medium storing one or more programs, and a computer sys-
tem that can perform the computer-implemented method. In
one embodiment, a computer implemented method com-
prises receiving, on a computer, a first event handler contain-
ing code configured to validate an object defined in a data-
base, wherein an application configured to manage the
database and the first event handler are in a host language,
identifying, by the computer and according to the first event
handler, a built-in event associated with the object, and reg-
istering, by the computer, the first event handler to the built-in
event, wherein the application automatically calls the first
event handler when the built-in event is triggered.

In one example, calling the first event hander comprises
executing the first event handler on a separate thread than the
application. In another example, the built-in event is detecting
that the object is modified. In another example, the built-in
event is detecting an explicit call to the built-in event. The
explicit call is a built-in validate action belonging to the
object.

In some examples, a second event handler configure to
validate the object can also be received. The second event
handler can also be in the host language. The computer can
identify the built-in event and register the second event han-
dler to the built-in event. When the built-in event is triggered,
the application can automatically call the first event handler
and the second event handler. In one example, the two event
handlers can be executed in parallel. In another example, the
two event handlers can be performed on separate threads.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a simplified view of a database system,
according to an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 shows an enlarged view of the database structure of
FIG. 1,

FIG. 3 illustrates relationships between individual lan-
guages making up a language family useful for interacting
with a database;

FIG. 4 is a simplified view showing an approach for
extending SQL, according to embodiments;

FIG. 5 is a simplified diagram illustrating a process flow,
according to an embodiment;

FIG. 6 illustrates hardware of a special purpose computing
machine configured to extend database entity-relationship
models execution, according to an embodiment;

FIG. 7 illustrates an example of a computer system;

FIG. 8 illustrates a simplified view of a database structure,
according to one embodiment;

FIG. 9 illustrates an application that includes constraints
defined in an event handler, according to one embodiment;
and

FIG. 10 illustrates a simplified view of a process flow 1000,
according to an embodiment.

DETAILED DESCRIPTION

Described herein are techniques for expressing a constraint
in a host language. In the following description, for purposes
of explanation, numerous examples and specific details are
set forth in order to provide a thorough understanding of the
present invention. It will be evident, however, to one skilled in
the art that the present invention as defined by the claims may
include some or all of the features in these examples alone or
in combination with other features described below, and may
further include modifications and equivalents of the features
and concepts described herein.

A host language can be the language used to generate an
application for managing a database. A constraint is defined
in the host language as an event handler. The event handler
can be registered to a built-in event associated with an object
of the database that the constraint is intended to validate. The
object can be an entity in an entity relationship model (ERM).
When the object triggers the built-in event, the event handler
is called to execute the constraint. Exemplary built-in events
include onSave (which triggers the event when the object is
saved), onValidate (which triggers the event when an explicit
call to validate the object is detected), onlnsert (which trig-
gers the event when the object is inserted), onUpdate (which
triggers the event when the object is updated), and onCheck-
BeforeSave (which triggers the event when the object is
checked prior to saving).

By expressing the constraint through an event handler, a
developer can define a constraint using the host language.
This can be desirable to a developer who is more familiar with
the host language than the underlying database language. The
defined constraint in the host language can be performed
simultaneously with constraints that are defined on the data
model. In the following description, for purposes of explana-
tion, numerous examples and specific details are set forth in
order to provide a thorough understanding of the present
invention. It will be evident, however, to one skilled in the art
that the present invention as defined by the claims may
include some or all of the features in these examples alone or
in combination with other features described below, and may
further include modifications and equivalents of the features
and concepts described herein. The first part of the detailed
description describes constraints in the host language as an
event handler. The second part of the detailed description
describes an exemplary extended data model that accommo-
dates ERMs.

US 9,354,948 B2

3

Constraints in the Host Language as an Event Handler

According to embodiments, a developer can express a con-
straint as an event handler in a host language. The event
handler can include code that defines the constraint and iden-
tifies a built-in event that triggers the event handler. When a
database object (such as an entity) is created, it is instantiated
with various built-in events. The built-in events can include
saving the object, creating the object, deleting the object,
validating the object, and modifying the object. An event
handler can be registered to any one of these built-in events
such that triggering the built-in event calls the event handler.
This allows the event handler, which represents the con-
straint, to be applied in a variety of situations.

Expressing the constraint on a higher level (e.g., applica-
tion level) than the database table has many advantages. First,
the constraint can be easier for an application developer to
create. Second, the constraint can applied not only when the
database is modified (e.g., inserted, updated, or deleted) but
also through explicit calls in the application code. This can
provide upfront data validation that notifies a user of potential
violations that may result from modifying the database with-
out changing the persistency of the database. Third, con-
straints generated in the host language are compatible with
constraints generated in other levels such as the data model or
the database table. Thus, constraints from different levels can
be applied simultaneously.

An example of different categories of constraints that can
be defined on the data model is given below. Typically, basic
and simple constraints can be defined on the database table or
as part of the data model while complex constraints can be
defined using coding in the host language.

10

15

20

25

30

4

database that stores the data in relational tables. SQL layer
810 can also include database constraints 814. Constraints
814 maintain the consistency and integrity of database 812 by
monitoring changes to database 812.

Above SQL layer 810 is CDS layer 820. CDS layer 820 is
configured to create data model 822 which is configured to
provide structure to database 812. In one example, CDS layer
820 can communicate with SQL layer 810 by performing
queries for data to generate data model 822. Data model 822
is an entity relationship model that includes entity 824. Entity
824 further includes constraints 828 that are configured to
validate data changes to entity 824.

Above CDS layer 820 is host language layer 830. Host
language layer 830 includes application 832 written in the
host language. Application 832 manipulates entities in data
model 822, which in turn manipulates relational tables in
database 812. Application 832 includes entity 834. Entity 834
can be defined in application 832 and be derived from entity
824. The host language layer 830 can automatically generate
built-in events 838 when an entity is created in application
832. Built-in events 838 can be triggered by changes to the
persistency of the entity. Application 832 further includes
constraint 836. Constraint 836 can be defined using the host
language. In one example, constraint 836 can be associated
with entity 834 such that changes to entity 834 can trigger
constraint 836. When entity 834 is modified, the changes can
be passed down until they reach database 812. By allowing
constraints to be defined in the host language, developers
more familiar with the host language can create constraints
that are easier to comprehend than if they were created in SQL
layer 810 or CDS layer 820. In one example, constraint 836

Category Examples
Basic NOT NULL
Key fields of entities
SalesOrder — Customer ID must be there
NOT INITIAL (MANDATORY)
Last Change Date must be set (no blank field)
Simple Enum checks (field value part of enum (incl. extensions))
— Relevance for LLVM/HANA Engine and possible benefits due to
compiling — no dictionary lookup
Which ENUMS — stable lists — not too many values
Foreign key — Difference between Associations/Compositions — Severity of check
existence checks SalesOrder has to have at least one item (associated entity
(associations? (composition)) — Cardinality check

Compositions!)
Dependent values
or value domains
domain)
Currencies that are set via configuration as allowed
currencies

Amount has to have a currency if the amount value is not initial
Currency to be checked against the allowed currencies (value

Some product is only allowed to be shipped into defined countries

(e.g. guns not into near-east)
salesOrder.Product.allowedShipmentCountries ~=
salesOrder.deliverAdress.country
Field dependencies
(values of one field

German address (country code = DE), the postal code has to be set
(NOT INITIAL), for US address (country code = US), the zipcode has to

depend on values of be set (NOT INITIAL)

other fields)

Application SalesOrder.Customer has to exist (existence check on customer ID)
Constraints and customer has to have status ,,released”

To allow shopping on invoice, a customer has to have at least one

other order where he paid

Discount 10% only allowed if order volume >500$ (configurable) and

customer has A-Rating, else only 5% discount

FIG. 8 illustrates a simplified view of a database structure
according to one embodiment. Database structure 800

can be attached to an event handler and registered to a built-in
event of entity 834 so that the constraint is performed when

includes three layers—SQL layer 810, core data services 65 the built-in event is triggered. In other embodiments, the

(CDS) layer 820, and host language layer 830. SQL layer 810
can contain database 812. Database 812 can be a relational

built-in events can be generated in layers other than the host
language layer.

US 9,354,948 B2

5

Defining a Constraint in an Event Handler

FIG. 9 illustrates an application that includes constraints
defined in an event handler according to one embodiment.
Defining a constraint in an event handler has the advantage
that a constraint created in the host language can be triggered
by built-in events of the host language layer. As a result,
creating constraints does not require a developer to be profi-
cient in languages other than the host language. As shown
here, application 832 includes entity 834. Entity 834 includes
constraint 910 and constraint 920 (which are part of the entity
defined in the data model), built-in event 930, and built-in
event 940. These constraints and built-in events can be
defined in the host language, data model, or the underlying
database table. In one example, built-in event 930 and built-in
event 940 can be one of onSave (which triggers the event
when the object is saved), onValidate (which triggers the
event when an explicit call to validate the object is detected),
onlnsert (trigger the event when the object is inserted), onUp-
date (which triggers the event when the object is updated),
and onCheckBeforeSave (which triggers the event when the
object is checked prior to saving). An example of an entity
with a built-in event is given below. As shown, entity sale-
sOrder as defined in the data model includes a built-in event
onValidate. Event handlers that are registered to the built-in
event onValidate can be called when the built-in event is
triggered.

entity salesOrder {
event onValidate {
//serialized representation of an entity could also be “this”
element source : serializedData;
¥
¥

s 3
An example of a built-in action that raises (i.e., triggers) an

event is given below. As shown, a validate action performed
on the entity raises event onValidate. Thus, the event onVali-
date is raised when an built-in validate action is detected.

(@raise.error : ‘system.constraintViolation’;
action validate() {
// open an error context here
Raise event onValidate ;
If system.messages.hasErrors() {
Raise error system.constraintViolation;
¥

}

Application 832 further includes event handlers 950, 960,
and 970. Event handlers 950, 960, and 970 can be generated
in the host language and contain code configured to validate
entity 834. In other words, each event handler can include a
constraint. An example of an event handler that is defined on
the entity is given below. As shown, the event handler is
registered to event onValidate and includes a constraint con-
figured to validate a property of the entity salesOrder. In other
examples, the event handler can be defined apart from the
entity yet be registered to a built-in event of the entity.

entity salesOrder {
key ID : integer NOT NULL;
customer : association to customer;
OrderDate : date;
createdBy : string;
lastChangeDate : date;
amount : amount {

10

15

20

30

40

45

50

60

65

6

-continued

value : float
currency : currency

action validate() // built-in action
On event e : onValidate as validateAmount {
Let so : salesOrder = deserialize(e.source);
if so.amount.value != 0 {
if lexists(so.amount.currency) {
// populate the error to the buffer as channel to communicate
violations
Let constraintError : system.message = { };
constraintError.severity = severity.error;
constraintError.identifier = ‘validateAmount’;
constraintError.data = serialize(so); // or just passing
e.source
system.messages.addMessage(constraintError);

Each event handler includes a constraint that can identify a
built-in event that the event handler is to be registered to. In
the example above, the event handler is to be registered to the
event onValidate. Here, event handler 950 is to be registered
to built-in event 930 while event handlers 960 and 970 are to
be registered to built-in event 940. In one example, applica-
tion 832 can register each event handler to its respective
built-in event according to the constraint defined in each event
handler. By registering event handler 950 to built-in event
930, application 832 calls event handler 950 when built-in
event 930 is triggered (i.e., raised). When event handler 950 is
called, the constraint defined in event handler 950 is per-
formed. In one example, the constraint can be performed in a
separate thread than application 832. In some examples
where multiple event handlers are registered to the same

5 built-in event, the multiple event handlers can be called simul-

taneously. The multiple event handlers can also be performed
on separate threads. Here, application 832 can simulta-
neously call on event handler 960 and 970 when built-in event
940 is triggered. Calling on event handler 960 and 970 can
include performing the constraints in the respective event
handlers in separate threads.

FIG. 10 illustrates a simplified view of a process flow 1000
according to an embodiment. Process 1000 begins by receiv-
ing, on a computer, a first event handler containing code
configured to validate an object defined in a database at 1002.
In one example, an application configured to manage the
database and the first event handler is in a host language. The
code can represent a constraint to validate an entity in an
entity relationship model.

Process 1000 then continues by identifying, by the com-
puter and according to the first event handler, a built-in event
associated with the object at 1004. In one example, the built-
in event is detecting that the object is modified. In another
example, the built-in event is detecting an explicit call to the
built-in event. The explicit call can be a built-in validate
action belonging to the object or another built-in action asso-
ciated with the object such as a save action or an update
action.

Once the built-in event has been identified, process 1000
continues by registering, by the computer, the first event
handler to the built-in event at 1006. The application can
automatically call the first event handler when the built-in
event is triggered. Calling the first event hander can include
executing the first event handler on a separate thread than the
application.

In some embodiments, a second event handler also written
in the host language can be received that is also configured to

US 9,354,948 B2

7

validate the object. The second event handler can be regis-
tered to the same built-in event as the first event handler.
When the built-in event is triggered, the application can call
on the first event handler and the second event handler and the
two event handlers can be executed in parallel. Each event
handler can be performed by the computer in a separate
thread.

Extended Data Model to Accommodate ERMs

Described herein are techniques for extending a relational
model-based database language (e.g., Structured Query Lan-
guage known as SQL), to accommodate higher level entity-
relationship models. In the following description, for pur-
poses of explanation, numerous examples and specific details
are set forth in order to provide a thorough understanding of
the present invention. It will be evident, however, to one
skilled in the art that the present invention as defined by the
claims may include some or all of the features in these
examples alone or in combination with other features
described below, and may further include modifications and
equivalents of the features and concepts described herein.

FIG. 1 shows a simplified view of a database system 100,
according to an embodiment. In particular, the database sys-
tem 100 comprises data 105 of the database itself, organized
according to a relational model.

A lower layer 106 of the database system comprises cal-
culation logic 108 that is designed to interact with the data
105 itself. Such calculation logic 108 may be performed by
various engines (e.g., SQL engine, calculation engine, SQL
script) in order to provide basic data definition and processing
based on the relational model. Such basic data definition can
include defining of data types making up the database, asso-
ciated metadata, and the database structure (e.g. columns,
tables). The lower layer 106 of the database system may
include SQL script 110, as well as data structures such as
tables 112, views 114, and calculation views 116.

The embodiment presented in FIG. 1 shows HANA, the
in-memory database available from SAP AG of Walldorf,
Germany, implemented as the database. However, embodi-
ments are not limited to use with this particular database.
Examples of other in-memory databases include, but are not
limited to, the SYBASE IQ database also available from SAP
AG; the Microsoft Embedded SQL for C (ESQL/C) database
available from Microsoft Corp. of Redmond, Wash.; the
Exalytics In-Memory database available from Oracle Corp.
of Redwood Shores, Calif., etc.

Further, while the embodiment presented in FIG. 1 shows
the database as comprising an in-memory database, various
embodiments could be employed in conjunction with conven-
tional disk-based database systems.

An application layer 118, overlying the calculation logic
108 of the database system 100 comprises control flow logic
120. The control flow logic 120 may be implemented utilizing
River Definition Language (RDL) 122 and JavaScript (JS)
124 to reference model concepts such as entities and relation-
ships that are not reflected in basic SQL. This control flow
logic 120 may further comprise common languages for defin-
ing and consuming data across different containers (e.g.
native, ABAP, Java).

As shown in FIG. 1, in order to facilitate the sharing of
information across such different containers and thereby pro-
mote a more unified environment, the database system 100
may further comprise a Core Data Services (CDS) compo-
nent 130. CDS component 130 comprises a common set of
domain-specific languages (DSL) and services. The CDS
component 130 may allow defining and consuming semanti-
cally rich data models as an integral part of the database
structure, thereby permitting data modeling as well as the

20

35

40

45

55

8

retrieval and processing of data to be raised to a higher seman-
tic level that is closer to the conceptual thinking of domain
experts. The role of the CDS component 130 is discussed in
detail further below.

FIG. 1 further shows client 150 in communication with the
HANA in-memory database appliance available from SAP
AG. The client 150 includes presentation logic 152 to provide
an output 154 comprising data 105 of the underlying database
structure in a form desired by a user. Here, the output 154 is
shown as a vertical bar chart, but of course this represents only
one of a multitude of different ways in which the data may be
communicated to a user. The presentation logic 152 may
communicate such output in the form of HTML 156, cascad-
ing style sheets (CSS) 158, and/or JavaScript 160, or a variety
of other user interface technologies.

FIG. 2 shows an enlarged view of the HANA in-memory
database structure of FIG. 1. In particular, FIG. 2 shows SQL
engine 200, calculation engine 202, and SQL script 204, as
part of the lower layer 106 that performs basic data definition
and processing based upon the relational model, according to
which the data 105 of the database is organized. FIG. 2 also
shows the application layer 118 of the database structure of
FIG. 1, including the RDL and JS elements of a query engine
119. The application layer 118 further comprises application
containers and other host languages 220, including ABAP
222, Java 224, and others 226.

FIG. 2 further shows the CDS component 130 situated
between the lower layer 106 and the application layer 118. As
illustrated in this figure, the CDS component 130 can be
leveraged in any consuming stack variant (stack of software
layers located on top of each other), as implemented through
the application layer 118. Specifically, services in higher
layers can use/consume the services of lower layers. Here,
because the application layer sits on top of a data layer in
which the CDS component 130 resides, definition and con-
sumption of the semantically rich higher-level models is
allowed.

In particular, the CDS component 130 implements higher-
level Domain Specific Languages (DSLs) and services based
on an entity-relationship model (ERM). The Data Definition
Language (DDL) 230 is used for defining semantically rich
data models, including the data types, associated metadata,
and database organization (e.g., columns and tables). As men-
tioned throughout, according to embodiments, the DDL may
be extended to further enrich these data models through the
use of entities and annotations.

The Query Language (QL) 232 is used to conveniently and
efficiently read data based on data models. It is also used to
define views within data models. The role of the QL 232 and
its relation to the DDL 230 is further illustrated in connection
with FIG. 3.

The Expression Language (EL) 234 is used to specify
calculated fields, default values, constraints, etc., within que-
ries. Calculated fields, default values, and constraints may be
specified as well as for elements in data models.

Other elements of the CDS component 130 can include
Data Manipulation Language (DML) 236 and a Data Control
Language (DCL) 237, both of which may be used to control
access to data.

Embodiments as described herein may distinguish
between the domain-specific languages DDL, QL, and EL as
members of a language family. This approach fosters consid-
erations such as modular design, incremental implementa-
tion, and reuse. FIG. 3 is a simplified view illustrating rela-
tionships between these language family members. A
consistent language experience across the members of the
family of FIG. 3 can be achieved by ensuring the languages

US 9,354,948 B2

9

follow a common style. This can extend to the host program-
ming language, with expressions in DDL, QL, and EL. code
adopting the same syntax. Utilization of application level
domain language(s) as has been described above, can offer
certain benefits. One possible benefit is that the application
domain level language can avoid the use of “inefficient” and
error-prone code.

Take, for example, the following simple data model
describing employee information:

entity Employee {

name : String(77);

salary : Amount; // a structured type

orgunit : Association to OrgUnit;

addresses : Association to Address[0..*] via entity

Employee2 Address;

homeAddress = addresses[kind=home]; // introduced later on
entity OrgUnit {

name : String(111);

costcenter : String(44);

manager: Association to Employee;

parent: Association to OrgUnit;

entity Address {
key streetAddress; key zipCode; city;
kind : enum { home; business; }

// omitted type defs

}

Under some circumstances, it may be desired to write a
query statement as follows: SELECT id, name, homeAd-
dress.zipCode FROM Employee WHERE

Within that sample snippet, path expressions along rela-
tionships are used to fetch data from an associated entity. In
the simple data model above, the above query statement is
equivalent to the following standard SQL statement:

SELECT e.id, e.name, a.zipCode FROM Employee e

LEFT OUTER JOIN Employee2 Address e2a ON e2a.employee = e.id
LEFT OUTER JOIN Address a ON e2a.address = a.id AND
a.type="homeAddr’

WHERE ...

This statement, however, may already be too complex for
many application developers. Thus, code patterns similar to
that given below, may be used in some pseudo languages:

customers = SELECT * FROM Customer
foreach ¢ in customers do
write ¢.id
write ¢.name
addresses = SELECT * FROM Address a, $Customer2 Address c2a
WHERE a.id = c2a.address AND c2a.customer = :c.id
foreach a in addresses do
if a.type = “homeAddr’ then write a.zipCode
end
end

There are several issues with the code presented immedi-
ately above. One issue is the use of an imperative coding style
with loops inloops, resulting in 1+n queries being executed or
too much data being fetched with a SELECT * statement.

The above code represents only a relatively simple case. A
more complex case is found in the following example:

SELECT FROM OrgUnit[boardarea="TIP’] .employees[salary>
$100.000°] { addresses[kind=home].city, count()

5

10

15

20

25

30

35

40

45

50

55

60

65

10

The preceding cases illustrate the importance of increasing
expressiveness of the languages used in application develop-
ment (here, the query language). This allows the intent of
application developers to be captured, rather than being bur-
ied under substantial volumes of imperative boilerplate cod-
ing.

Such expressiveness is in turn is fundamental to having
optimizations applied by the query engine (in a manner analo-
gous to functional programming vs. imperative program-
ming). This can affect system characteristics, such as its over-
all performance and scalability. Further, a language’s ability
to allow developers to draft concise and comprehensive code,
can increase developer productivity. It can also reduce the risk
of mistakes and also enhance readability, and thus increase
the maintainability of the code.

In order to write concise and readable query statements, it
is desirable to enrich the data definitions with sufficient meta-
data (e.g., about associations, semantic types, etc.). Accord-
ingly, embodiments seek to extend the DDL to define data
definitions with sufficient metadata, and seek to extend the
QL to leverage such definitions.

DDL and QL are declarative, domain-specific languages
providing developers with concise ways to express their mod-
els and queries. Certain concepts may originate from entity-
relationship modeling (ERM). By adding native support for
such concepts in the underlying engine of the database,
embodiments avoid the impedance mismatch induced by the
translation of conceptual models based on ERM into imple-
mentations based upon a plain relational model. In particular,
writing concise and comprehensive code reduces risks of
mistakes and increases readability and maintainability.

Moreover, as the concepts of entity-relationship models
may lie at the core of many higher-level models, embodi-
ments are able to capture the semantics of other data models
(e.g., RDL-based data models), and share those semantics
with database modelers, and/or ABAP of SAP AG, or Java
consumers. This reduces fragmentation and the loss of
semantics. In addition, since ERM is also the chosen basis for
technologies like OData EDM, embodiments can facilitate
mapping entities and views to OData entity sets.

Embodiments may employ a functional approach that is
based on standard SQL. In particular, the comprehensive,
domain-specific nature of DDL and QL allows capturing the
intent of application developers, thus avoiding a lack of clar-
ity regarding that intent which can result from large volumes
of imperative boilerplate coding. This follows the principles
of functional programming and is important for optimiza-
tions.

The functional approach may be inherited from SQL. A
SQL SELECT statement declares which sub-set of an overall
data model is of interest as projections and selections. It may
be left to the query engine to determine optimal execution,
including parallelizing as appropriate.

In contrast with imperative object traversion patterns,
embodiments can speed up many data retrieval use cases.
While many of those retrieval cases are not individually
expensive, the cumulative impact of this streamlining can
have significant impacts on scalability, as it affects all
requests over long periods of time.

Embodiments address some of the complexity offered by
standard SQL. to typical application developers by raising the
basis of SQL from plain relational models to the level of
conceptual models. This is done by providing native support
for ERM in the database system. In this manner, the use of
SQL may be reestablished for most application developers,
not only for those with the SQL expertise for specific optimi-
zation tasks.

US 9,354,948 B2

11

Embodiments employ associations in DDL. Specifically,
the DDL allows definition of data models as entity-relation-
ship models on a semantically rich level that is close to actual
conceptual thought. To achieve this over the conventional
relational model of standard SQL., certain concepts are cap-
tured by the embodiments described herein.

FIG. 4 is a simplified view showing an approach for
extending SQL according to embodiments. As shown in the
system 400 of FIG. 4, one concept underlying embodiments
as described herein, is the use of entities 401 with structured
types, in contrast with a conventional relational database
which uses only flat tables. Entities are structured types with
an underlying persistency and a unique key 402. Structured
types are records of named and typed elements. An entity key
is formed of a subset of the elements of the entity that
uniquely identify instances. Views are entities defined by a
query, which essentially defines a projection on underlying
entities.

Another concept underlying entities as described herein,
involves employing associations 404 on a conceptual level.
This approach contrasts with the conventional use of hand-
managed foreign keys. Associations define relationships
between entities, and are specified by adding an element with
anassociation type to a source entity 408 that points to a target
entity 410. As shown in the FIG. 4, the relationship imple-
mented by the association type, between source entity type
and the target entity type, reflects the actual relationship
between entities in the overlying ERM model 420. Using the
type definition, associations may capture metadata about
relationships present in the ERM in a ‘reflectable’ way.
According to such a reflectable characteristic, a consuming
portion of code receiving a piece of data from the database can
get back to the type information (i.e., metadata) provided for
the respective elements in the data model.

The association may be complemented by optional further
information (e.g., regarding cardinality, which keys to use,
additional filter conditions, etc.) up to a complete JOIN con-
dition. According to embodiments, the clause-based syntax
style of standard SQL may be adopted for specifying the
various parameters without sacrificing readability.

In addition, the extended DDL works with custom-defined
Types instead of being limited to primitive types only. The
extended DDL may also add other enhancements, such as
annotations, to enrich the data models with additional meta-
data, constraints, or calculated fields.

FIG. 5 is a simplified diagram illustrating a process flow
500 according to an embodiment. In a first step 502, a data-
base is provided comprising data organized according to a
relational model.

In a second step 504, a database engine is provided in
communication with a database utilizing a language describ-
ing the relational model. In a third step 506, an application is
provided comprising an entity-relationship model (ERM)
including a first entity, a second entity, and a relationship
between the first entity and the second entity.

In a fourth step 508, a query engine of the application
communicates a query to the database engine utilizing a lan-
guage extension providing the entity and relationship com-
ponents of the ERM. The language extension may comprise a
first structured entity type including a first key and indicating
the first entity, a second structured entity type including a
second key and indicating the second entity, and a third struc-
tured association type reflecting the relationship. The asso-
ciation type may be complemented with further additional
information.

In a fifth step 510, the database engine returns a query result
to the query engine based upon the language extension.

10

15

20

25

30

35

40

45

50

55

60

65

12
EXAMPLES

Some examples of extension of the SQL database language
to provide entities and associations of ERMs, are now given
below.

entity Address {
owner : Association to Employee; // can be used for :m associations
streetAddress; zipCode; city; // snipped type defs
kind : enum { home, business };
¥
entity Employee {
addresses : Association[0..*] to Address via backlink owner;
homeAddress = addresses[kind=home]; // — using XPath-Like filter.
¥
Association to Address;
Association to Address { zipCode, streetAddress };
Association [0..*] to Address via backlink owner;
Association [0..1] to Address via backlink owner where kind=home;
Association [0..*] to Address via backlink owner where zipCode like
T76%;
Association [0..*] to Address via entity Emp2 Adr;
Association [0..1] to Address via entity Emp2 Adr where kind=home;
Association [0..*] to Address on owner=this;
Association [0..*] to Address on Address.owner.__id = Employee.__id;

Association to Address on owner=this AND kind=home;

For specifying syntax, embodiments may use a derivate of
the Backus Naur Form (BNF) family of metasyntax notations
used to express a context-free grammar, and which can be
relied upon to make a formal description of a computer lan-
guage. The basic constructs may be summarized as follows:

Construct Notation ~ Comments

definition = Definitions are written with a single equals
sign, e.g. Rule = ...

extension += Extends a definition introduced before by
additional rules

terminal keyword Language keywords are set in bold red

symbol

terminal “r Single-character language symbols are set in

character double quotes

alternation Pipe symbols separate alternatives, e.g. foo

. and bar | zoo w/car
grouping (..) Parenthesis group constructs, e.g. (foo | bar)
with car

option [.] Square brackets designate optional constructs,
e.g. [optional]

repetition WX 0+ repetitions are indicated by appended “*”,
e.g. zeroOrMore™*

repetition ot 1+ repetitions are indicated by appended “+”,
e.g. oneOrMore+

comment - Comments start with a double-dash, e.g. -- this

is a comment

Syntax for SQL extended to include entities and associa-
tions as described herein, may be described as follows:

US 9,354,948 B2

13

AssignedType += | AssociationType

AssociationType = Association[cardinality](to zargetEntity)
[managedJoin| unmanagedJtoin]

cardinality = “[”[(maxs [*)“, ”"][min ... J(max[*)*]"|“[]”
targetEntity = QualifiedName

managedloin = (forwardLink | backwardLink | mediatedLink)
[where filterClause]

forwardLink = “{” foreignKeys“}”

backwardLink = via backlink reverseKeys

mediatedLink = via entity entityName

foreignKeys = targetKeyElement

[AS alias][*, ” foreignKeys]

reverseKeys = targetKeyElement

wn

targetKeyElement = element(“.”elementName)*

unmanagedloin= on filterClause

From DDL perspective, association is a new primitive type
that is specified with the type name Association, followed by
several parameter clauses to specify requisite metadata.
These parameter clauses are as follows:

Cardinality allows specifying the relationship’s cardinality
in the form of [min . . . max], with max=*denoting infinity and
“[T’ as a shorthand for [0 . . . *]. As a default, if omitted
[0...1]is used as the default cardinality. An example is:

Association| | to Address via backLink owner;

To targetEntity specifies the association’s target entity. A
qualified name is expected, referring to another entity (incl.
views). Specifying the target is mandatory—there is no
default.

{foreignKeys} allows specifying a combination of alterna-
tive key elements in the target entity, to be used to establish
the foreign key relationship. Where a key element is in a
substructure on the target side, an alias name is to be speci-
fied. Further details are provided below regarding associa-
tions represented as foreign key relationships.

If omitted, the target entity’s designated primary key ele-
ments are used. The following are examples:

Association to Address { zipCode, streetAddress };
Association to Address { some.nested.key AS snk };

Another parameter clause is VIA backlink: reverseKeys.
For 1:m associations, it is mandatory to specify target ele-
ments, which are expected to be a key combination matching
the source’s primary keys or an association referring to the
source entity. An example is:

Association to Address via backLink owner;

Another parameter clause is VIA entity: entityName. For
m:m associations, it is mandatory to specify a link table’s
entity name. That name can either refer to a defined entity or
a new entity will be created as follows:

14

If the data model contains an explicit definition of the link
table entity, that entity must adhere to the template shown
above. It can, in addition, add other elements. An example is

given below:
5

Association to Address via entity Employee2 Address;
entity Employee2Address {
10 employee : Association to Employee;
address : Association to Address;

The WHERE filterClause allows specifying additional fil-
ter conditions that are to be combined with the JOIN condi-
tions. This can be especially relevant in combination with
VIA backlink or entity clauses. Depending on the filterCon-
dition this can reduce a base :m relationship to one with a:1
cardinality. An example is given below:

Association to Address[0 . . . 1] via backLink owner where

kind=home;

The ON filterClause allows fully specifying an arbitrary
join condition, which can be any standard SQL filter expres-
sion. Using this option results in the respective association
being user-managed. That is, no foreign key elements/fields
are created automatically. The developer is expected to
explicitly manage the foreign key elements, including filling
them with appropriate foreign key values in write scenarios.
An example is given below:

Association to Address on owner=this;

Element names showing up in VIA, WHERE, and ON
clauses, are resolved within the scope of the target entity’s
type structure. Siblings can be referred to by prefixing an
element with a . Elements from the scope above can be
referred to by prefixing an element with “ . . . ”, etc.

In addition, the outer entity’s top-level scope can be
referred through the pseudo variable “this”, which is
described further below in connection with Pseudo Variables
in QL.

According to embodiments, associations are represented
as foreign key relationships. In the relational model, associa-
tions are mapped to foreign key relationships. The foreign key
elements are usually created automatically as described in the
following sections. In particular, an element with association
type is represented as a nested structure type containing for-
eign key elements corresponding to the target entity’s pri-
mary key elements—i.e. having the same names and types.
The following are examples of definitions which may be
given:

40

55

entity Employee { ...

addressl : Association to Address;

address2 : Association to Address { zipCode, streetAddress };
addresses : Association to Address[0..*] via backlink owner;

}

60

entity <entityName> {
<nameOfSourceEntity> : Association to <SourceEntity>;
<nameOfTargetEntity> : Association to <TargetEntity>;

In this example, the association elements would implicitly

65 bedefined with a nested structure type containing foreign key

elements in the :1 cases (plus additional metadata about the
association) as follows:

US 9,354,948 B2

15

entity Employee { ...
address1 {
_ID : type of Address.__ID;
¥
address2 {
zipCode : type of Address.zipCode;
streetAddress : type of Address.streetAddress;

addresses { /* none at all since :m */ }

Following the rules for mapping structured types to the
relational model as specified above, the underlying table
would be created:

CREATE TABLE Employee (...
“addressl.__ID” Integer,
“address2.zipCode” String(...),
“address2.streedAddress™ String (...)

)

Rules for representing associations in the persistence
model may apply, as indicated in the table below:

16

The code shown above essentially indicates that the entity
Employee has two associations—one association is to
Address and another association is to Currency within its
salary element.
5 Associations in custom-defined types may only be sup-
ported for a simple “to-one” relationship with a foreign key
on the source side. That is, associations with via backlink or
via entity clauses may not be supported for elements in cus-
tom-defined types.

Associations in Query Language (QL) are now discussed.

Querying Associations with :m Cardinality

Resolving associations or compositions with 1:m cardinal-
ity using path expressions or nested projection clauses with
the flattening operator “”” in place results in flat result sets
with duplicate entries for the 1: side, which is in line with
standard SQL JOINSs and the relational model.

As examples, in the following queries, “addresses” refers
to an association with “to-many” cardinality [O . . . *]:

10

15

20 SELECT name, addresses.city FROM Employee;

SELECT name, addresses.{ zipCode, city } FROM Employee;

If...is for to-one cases, e.g. [0...1] for to-many cases
specified
<no join Nested foreign key elements are created for not allowed
clause> target’s primary key elements.
{foreignKeys} Nested foreign key elements are created for

the elements specified in foreignKeys.
VIA backlink No nested foreign keys are created; instead the reverseKeys are
reverseKeys expected to link back from target to source.
VIA entity No nested foreign keys are created; instead the link table named
entityName entityName is created/used as described above.
ON No nested foreign key elements are created; managing the foreign
joinCondition key relationship is completely up to the developer.

Consistent with the approach in SQL, no plausibility
checks are enforced (e.g., checking whether target key ele-
ments specified in {foreignKeys} fulfill the uniqueness
requirements). Also, no implicit referential integrity checks
are enforced at runtime.

According to embodiments, associations may be in cus-
tom-defined types. As associations are special types, they can
principally be defined not only for elements in entity defini-
tions, but in type definitions in general. For example, the
following definition of the association Amount.currency is
valid DDL content:

entity Currency {
key code : String(3);
description : String(33);

// List of pre-defined Currencies

type Amount {
value : Decimal(10,2);
currency : Association to Currency;

}

An actual relationship between entities is established when
using the type Amount for an element within an entity defi-
nition, as in:

entity Employee {
salary : Amount;
address : Association to Address;

The result sets for the example queries above, are shown
below, each with the same value for name repeated/duplicated
for each found entry on the :m Address side:

40

<Result Set 1> { name, city }
<Result Set 2> { name, zipCode, city }

45 Embodiments also allow the return of ‘Deep’ Result Sets.
Specifically, in addition to the standard flattening behavior,
the introduction of nested projection clauses and structured
result sets principally allows expression of ‘deep’ queries
along :m associations. These deep queries return ‘real deep’
50 result sets having the 1: sides elements on a top level, with
nested tables/sets for the :m sides.

For example, the deep query:

SELECT name, addresses {zipCode, city} FROM

Employee;

would be expected to return a result set with a nested collec-
tion as shown below:

<Result Set> {
name,

60 addresses : <collection of> Address { zipCode, city }

Such deep querying may provide certain benefits. One
possible benefit is to allow retrieving larger structures
through a single query.

Currently, in the absence of deep querying, such larger
structures may frequently be obtained in a brute-force

o
o

US 9,354,948 B2

17

approach, through 1+n queries with n being the number of
records returned by a 1: side query. This is detrimental to
performance, particularly if such a query spans several levels
of to-many associations.

While the other extensions can be realized by translating to
standard SQL queries, this one requires adding special sup-
port deep within the query engine. The absence of such sup-
port may preclude using to-many associations in the non-
flattened way. This is discussed further below in the
associations of FROM clauses, regarding how association
trees can be traversed.

Associations in WHERE Clauses

Associations can arise not only in projection clauses but
also in filter conditions in WHERE clauses. Respective com-
parison operators may be enhanced to support associations, as
depicted in the following examples:

1. SELECT ... from Emloyee WHERE orgunit={ __id: *4711" };
2. SELECT ... from Emloyee WHERE homeAddress={
zipCode: ‘76149°, streetAddress: ‘Vermontring 2’

3. SELECT ... from Emloyee WHERE orgunit="4711";

4. SELECT ... from Emloyee WHERE homeAddress.city like

‘Wall%’;

5. SELECT ... from Emloyee WHERE homeAddress.city IN
(“Walldorf’, ...);

6. SELECT ... from Emloyee WHERE address IS NULL;

7. SELECT ... from Emloyee WHERE address[kind=home].city =
‘Walldorf”;

8. SELECT ... from Emloyee WHERE homeAddress =

addresses[kind=home];

Several issues arising within the examples immediately
above, may be worthy of note. In connection with:
ad 1,2: A record literal can be passed to a comparison with an
association, with elements that match the combination of the
foreign keys.
ad 3: Support for Association type in QL includes automatic
coercions of typed scalars or string representations thereof to
single-key associations.
ad 4: One can also refer to the individual key values using
standard path expressions.
ad 51f: Other SQL comparison operators can be used, such as
LIKE, IN, ISNULL,
ad 8: It can be combined with XPath-like filter expressions.
ad 9: It can be combined with compare associations, provided
they are assignable.

The above provides just a few examples to give the idea. In
general, every condition that is possible with standard SQL
expressions shall be possible to do with associations as well,
including sub queries with exists and not exists, etc.

Associations in FROM Clauses

Embodiments may also allow associations in FROM
clauses. Specifically, host languages may provide support for
representing associations as typed variables or elements. This
is described below in connection with association types in
host languages.

Accordingly, one can traverse along associations, as shown
in the following examples (in some pseudo language):

var daniel = SELECT name, homeAddress FROM Employee WHERE
name="Daniel’;

// ... and somewhat later, maybe at some other place in an
application...

var addresses = SELECT * FROM Address WHERE
this=daniel.homeAddress;

10

15

20

25

30

35

40

50

55

60

65

18

The expression this=<an association> can be used. The
comparison this=<an association> can be retrieve an entity by
a given association. The pseudo variable this is always an
alias for the entity given in the FROM clause. Therefore, the
statement above actually resolves to:

SELECT * FROM Address
this=daniel.homeAddress;

The comparison this=<an association> compares a queried
entity with a given association—the association must be of
type Association to <queried entity>{ . . .]. This expands to a
WHERE clause corresponding to the ON condition resolved
from the association. In this case it would actually resolve to:

this WHERE

SELECT * FROM Address this
WHERE this.zipCode = daniel.homeAddress.zipCode
AND this.streetAddress = daniel.homeAddress.streetAddress
AND this.type = ‘home’;

Embodiments may also allow the use of SELECT from
association. Specifically, association-traversal code patterns
like the one below are frequently seen:

SELECT * from Address
this=daniel.homeAddress;

An association in general, and a programming language
variable with association type support in particular, carries all
information about a target record—essentially providing
information as to which entity goes with which key. Thus
equivalent to the query above, embodiments allow the short-
hand below for traversing associations:

SELECT * from daniel.homeAddress;

In general, a query statement of the form SELECT . . . from
<someAssociation> expands to:

WHERE

SELECT ... from <someAssociation>.<targetEntity> WHERE
this=<someAssociation>;

Here, <targetEntity> signifies the metadata associated with
the association corresponding to the target entity specified in
the association’s declaration using the ON targetEntity
clause.

JOINs Declare Ad-Hoc Associations

Embodiments allow JOINs to declare ad-hoc associations.
In the case of a missing association, the standard JOIN <tar-
get> ON <join condition> clauses as introduced in SQL-92
are still supported, which align with the extensions intro-
duced above, as they naturally introduce associations in an
ad-hoc fashion.

For example, in the data model given above, the entity
Employee has an association homeAddress, but is lacking a
similar association for businessAddress, which can be com-
pensated for using a standard JOIN clause as follows:

SELECT FROM Employee e

ASSOCIATION TO Employee2 Address e2a ON e2a.employee = ¢

ASSOCIATION TO Address businessAddress ON _id =
e2a.address.__id AND kind=business

ID, name,
businessAddress { streetAddress, zipCode, city }

}

US 9,354,948 B2

19

The expression may follow the syntax below:

JoinClause += | JOIN targetEntity [[AS] Identifier]
JoinConditionClauses

Other syntax is as discussed above in connection with asso-
ciations in DDL.

JOIN clauses fit easily into the extensions in DDL and QL.
JOIN clauses can be interpreted as an ad-hoc definition of
missing associations.

In the example immediately above, the association busi-
nessAddress is added. This result is recognized if the projec-
tion clause of the example above, is compared to that of the
query applied to the domain model if the association were in
place (below):

SELECT FROM Employee {
ID, name,
businessAddress { streetAddress, zipCode, city }

}

Embodiments also allow the use of simplified JOIN
clauses. In particular, following the observation that JOINs
essentially declare ad-hoc associations, embodiments JOINs
to be declared using the same clauses that are used to declare
associations in DDL. Given this, the above example can be
written more easily as follows:

SELECT FROM Employee e
ASSOCIATION TO Address businessAddress VIA entity
Employee2 Address
WHERE kind=business
{
ID, name,
businessAddress { streetAddress, zipCode, city }

}

FIG. 6 illustrates hardware of a special purpose computing
machine configured to extend database entity-relationship
models according to an embodiment. In particular, computer
system 600 comprises a processor 602 that is in electronic
communication with a non-transitory computer-readable
storage medium 603. This computer-readable storage
medium has stored thereon code 604 corresponding to a
query engine. Code 605 corresponds to a database engine.
Code may be configured to reference data stored in a database
of a non-transitory computer-readable storage medium, for
example as may be present locally or in a remote database
server. Software servers together may form a cluster or logical
network of computer systems programmed with software
programs that communicate with each other and work
together in order to process requests.

An example system 700 is illustrated in FIG. 7. Computer
system 710 includes a bus 705 or other communication
mechanism for communicating information, and a processor
701 coupled with bus 705 for processing information. Com-
puter system 710 also includes a memory 702 coupled to bus
705 for storing information and instructions to be executed by
processor 701, including information and instructions for
performing the techniques described above, for example.
This memory may also be used for storing variables or other
intermediate information during execution of instructions to
be executed by processor 701. Possible implementations of
this memory may be, but are not limited to, random access
memory (RAM), read only memory (ROM), or both. A stor-

10

15

20

25

30

35

40

45

50

55

60

20

age device 703 is also provided for storing information and
instructions. Common forms of storage devices include, for
example, a hard drive, a magnetic disk, an optical disk, a
CD-ROM, a DVD, a flash memory, a USB memory card, or
any other medium from which a computer can read. Storage
device 703 may include source code, binary code, or software
files for performing the techniques above, for example. Stor-
age device and memory are both examples of computer read-
able mediums.

Computer system 710 may be coupled via bus 705 to a
display 712, such as a cathode ray tube (CRT) or liquid crystal
display (LCD), for displaying information to a computer user.
An input device 711 such as a keyboard and/or mouse is
coupled to bus 705 for communicating information and com-
mand selections from the user to processor 701. The combi-
nation of these components allows the user to communicate
with the system. In some systems, bus 705 may be divided
into multiple specialized buses.

Computer system 710 also includes a network interface
704 coupled with bus 705. Network interface 704 may pro-
vide two-way data communication between computer system
710 and the local network 720. The network interface 704
may be a digital subscriber line (DSL) or a modem to provide
data communication connection over a telephone line, for
example. Another example of the network interface is a local
area network (LAN) card to provide a data communication
connection to a compatible LAN. Wireless links are another
example. In any such implementation, network interface 704
sends and receives electrical, electromagnetic, or optical sig-
nals that carry digital data streams representing various types
of information.

Computer system 710 can send and receive information,
including messages or other interface actions, through the
network interface 704 across a local network 720, an Intranet,
or the Internet 730. For a local network, computer system
(710 may communicate with a plurality of other computer
machines, such as server 715. Accordingly, computer system
710 and server computer systems represented by server 715
may form a cloud computing network, which may be pro-
grammed with processes described herein. In the Internet
example, software components or services may reside on
multiple different computer systems 710 or servers 731-735
across the network. The processes described above may be
implemented on one or more servers, for example. A server
731 may transmit actions or messages from one component,
through Internet 730, local network 720, and network inter-
face 704 to a component on computer system 710. The soft-
ware components and processes described above may be
implemented on any computer system and send and/or
receive information across a network, for example.

The above description illustrates various embodiments of
the present invention along with examples of how aspects of
the present invention may be implemented. The above
examples and embodiments should not be deemed to be the
only embodiments, and are presented to illustrate the flexibil-
ity and advantages of the present invention as defined by the
following claims. Based on the above disclosure and the
following claims, other arrangements, embodiments, imple-
mentations and equivalents will be evident to those skilled in
the art and may be employed without departing from the spirit
and scope of the invention as defined by the claims.

What is claimed is:

1. A computer-implemented method comprising:

receiving, on an in-memory database engine, a first event

handler containing code configured to validate a first
entity comprising an object in an in-memory database
and including a constraint derived from a second entity
of an Entity-Relationship Model defined by an extension
of Structured Query Language to include an association

US 9,354,948 B2

21

type comprising a first parameter clause specifying a
cardinality, and a second parameter clause specifying a
foreign key, wherein an application configured to man-
age the in-memory database and the first event handier
are in a host language different than SQL;

identifying, by the in-memory database engine and accord-

ing to the first event handler, a built-in event associated
with the first entity;

registering, by the in-memory database engine, the first

event handler to the built-in event;

evaluating the constraint by referencing the cardinality and

the foreign key,
wherein the application automatically calls the first event
handler when the built-in event is triggered; and

wherein the in-memory database engine includes at least
one service, data definition, or data processing based on
an Entity-Relationship Model and at least one service,
data definition, or data processing based on a Relational
Model.
2. The computer-implemented method of claim 1, further
comprising:
receiving, on the in-memory database engine, a second
event handler configured to validate the first entity,
wherein the second event handler is in the host language;

identifying, by the in-memory database engine and accord-
ing to the second event handler, the built-in event asso-
ciated with the first entity; and

registering, by the in-memory database engine, the second

event handler to the built-in event,

wherein the application automatically calls the second

event handler when the built-in event is triggered, and
wherein the first event handler and the second event han-
dler are executed in parallel.
3. The computer-implemented method of claim 2, wherein
the first event handler and the second event handler are
executed on separate threads.
4. The computer-implemented method of claim 1, wherein
the calling the first event handler comprises executing the first
event handler on a separate thread than the application.
5. The computer-implemented method of claim 1, wherein
the built-in event is detecting that the first entity is modified.
6. The computer-implemented method of claim 1, wherein
the built-in event is detecting an explicit call to the built-in
event.
7. The computer-implemented method of claim 6, wherein
the explicit call is a built-in validate action belonging to the
first entity.
8. A non-transitory computer readable storage medium
storing one or more programs, the one or more programs
comprising instructions for:
receiving, on an in-memory database engine, a first event
handier containing code configured to validate a first
entity comprising an object in an in-memory database
and including a constraint derived from a second entity
of'an Entity-Relationship Model defined by an extension
of Structured Query Language (SQL) Language to
include an association type comprising a first parameter
clause specifying a cardinality, and a second parameter
clause specifying a foreign key, wherein an application
configured to manage the in-memory database and the
first event handler are in a host language different than
SQL;

identifying, by the in-memory database engine and accord-
ing to the first event handler, a built-in event associated
with the first entity; and

registering, by the in-memory database engine, the first

event handler to the built-in event;

10

15

20

25

30

35

40

45

50

55

60

65

22

evaluating the constraint by referencing the cardinality and

the foreign key,
wherein the application automatically calls the first event
handler when the built-in event is triggered; and

wherein the in-memory database engine includes at least
one service, data definition, or data processing based on
an Entity-Relationship Model and at least one service,
data definition, or data processing based on a Relational
Model.
9. The non-transitory computer readable storage medium
of claim 8, further comprising:
receiving, on the in-memory database engine, a second
event handler configured to validate the first entity,
wherein the second event handler is in the host language;

identifying, by the in-memory database engine and accord-
ing to the second event handler, the built-in event asso-
ciated with the first entity; and

registering, by the in-memory database engine, the second

event handler to the built-in event,

wherein the application automatically calls the second

event handler when the built-in event is triggered, and
wherein the first event handler and the second event han-
dler are executed in parallel.

10. The non-transitory computer readable storage medium
of claim 9, wherein the first event handler and the second
event handler are executed on separate threads.

11. The non-transitory computer readable storage medium
as in claim 8, wherein the calling the first event handler
comprises executing the first event handler on a separate
thread than the application.

12. The non-transitory computer readable storage medium
of claim 8, wherein the built-in event is detecting that the first
entity is modified.

13. The non-transitory computer readable storage medium
of claim 8, wherein the built-in event is detecting an explicit
call to the built-in event.

14. The non-transitory computer readable storage medium
of claim 13, wherein the explicit call is a built-in validate
action belonging to the first entity.

15. A computer system comprising:

ail in-memory database engine; and

a non-transitory computer readable medium having stored

thereon one or more programs, which when executed by
the in-memory database engine, causes the in-memory
database engine to:

receive a first event handler containing code configured to

validate a first entity comprising an object in an in-
memory database including a constraint derived from a
second entity of an Entity-Relationship Model defined
by an extension of Structured Query Language (SQL)
Language to include an association type comprising a
first parameter clause specifying a cardinality, and a
second parameter clause specifying a foreign key,
wherein an application configured to manage the in-
memory database and the first event handier are in a host
language different than SQL;

identify according to the first event handler, a built-in event

associated with the first entity;

register the first event handier to the built-in event; and

evaluate the constraint by referencing the cardinality and

the foreign key, wherein the application automatically
calls the first event handler when the built-in event is
triggered; and

wherein the in-memory database engine includes at least

one service data definition, or data processing based on

US 9,354,948 B2

23

an Entity-Relationship Model and at least one service,
data definition, or data processing based on a Relational
Model.

16. The computer system of claim 15, wherein the one or
more programs, which when executed by the in-memory
database engine, further cause the in-memory database
engine to:

receive a second event handler configured to validate the

first entity, wherein the second event handler is in the
host language;

identify according to the second event handler, the built-in

event associated with the first entity; and

register the second event handler to the built-in event,

wherein the application automatically calls the second

event handler when the built-in event is triggered, and
wherein the first event handler and the second event han-
dler are executed in parallel.

17. The computer system of claim 16, wherein the first
event handler and the second event handler are executed on
separate threads.

18. The computer system of claim 15, wherein the calling
the first event handler comprises executing the first event
handler on a separate thread than the application.

19. The computer system of claim 15, wherein the built-in
event is detecting that the first entity is modified.

20. The computer system of claim 15, wherein the built-in
event is detecting an explicit call to the built-in event.

#* #* #* #* #*

10

15

20

25

24

